Wintery Knight

…integrating Christian faith and knowledge in the public square

Astronomer Guillermo Gonzalez lectures on intelligent design and habitability

The 5 video clips that make up the full lecture.

The playlist for all 5 clips is here.

About the speaker

Guillermo Gonzalez is an Associate Professor of Physics at Grove City College. He received his Ph.D. in Astronomy in 1993 from the University of Washington. He has done post-doctoral work at the University of Texas, Austin and at the University of Washington and has received fellowships, grants and awards from such institutions as NASA, the University of Washington, the Templeton Foundation, Sigma Xi (scientific research society) and the National Science Foundation.

Learn more about the speaker here.

The lecture

Here’s part 1 of 5:

And the rest are here:

Topics:

  • What is the Copernican Principle?
  • Is the Earth’s suitability for hosting life rare in the universe?
  • Does the Earth have to be the center of the universe to be special?
  • How similar to the Earth does a planet have to be to support life?
  • What is the definition of life?
  • What are the three minimal requirements for life of any kind?
  • Requirement 1: A molecule that can store information (carbon)
  • Requirement 2: A medium in which chemicals can interact (liquid water)
  • Requirement 3: A diverse set of chemical elements
  • What is the best environment for life to exist?
  • Our place in the solar system: the circumstellar habitable zone
  • Our place in the galaxy: the galactic habitable zones
  • Our time in the universe’s history: the cosmic habitable age
  • Other habitability requirements (e.g. – metal-rich star, massive moon, etc.)
  • The orchestration needed to create a habitable planet
  • How different factors depend on one another through time
  • How tweaking one factor can adversely affect other factors
  • How many possible places are there in the universe where life could emerge?
  • Given these probabilistic resources, should we expect that there is life elsewhere?
  • How to calculate probabilities using the “Product Rule”
  • Can we infer that there is a Designer just because life is rare? Or do we need more?

The corelation between habitability and measurability.

  • Are the habitable places in the universe also the best places to do science?
  • Do the factors that make Earth habitable also make it good for doing science?
  • Some places and times in the history of the universe are more habitable than others
  • Those exact places and times also allow us to make scientific discoveries
  • Observing solar eclipses and structure of our star, the Sun
  • Observing stars and galaxies
  • Observing the cosmic microwave background radiation
  • Observing the acceleration of the universe caused by dark matter and energy
  • Observing the abundances of light elements like helium of hydrogen
  • These observations support the big bang and fine-tuning arguments for God’s existence
  • It is exactly like placing observatories on the tops of mountains
  • There are observers existing in the best places to observe things
  • This is EXACTLY how the universe has been designed for making scientific discoveries

This lecture was delivered by Guillermo Gonzalez in 2007 at the University of California at Davis.

Filed under: Videos, , , , , , , , , , , , , , , , , , , ,

Scientists discover that tides affect a planet’s habitability

Circumstellar Habitable Zone

Circumstellar Habitable Zone

Science Daily reports on a new factor that affects planetary habitability: tides. Specifically, tides can affect the surface temperature of a planet, which has to be within a certain range in order to support liquid water – a requirement for life of any conceivable kind.

Excerpt:

Tides can render the so-called “habitable zone” around low-mass stars uninhabitable. This is the main result of a recently published study by a team of astronomers led by René Heller of the Astrophysical Institute Potsdam.

[...]Until now, the two main drivers thought to determine a planet’s temperature were the distance to the central star and the composition of the planet’s atmosphere. By studying the tides caused by low-mass stars on their potential earth-like companions, Heller and his colleagues have concluded that tidal effects modify the traditional concept of the habitable zone.

Heller deduced this from three different effects. Firstly, tides can cause the axis of a planet`s rotation to become perpendicular to its orbit in just a few million years. In comparison, Earth’s axis of rotation is inclined by 23.5 degrees — an effect which causes our seasons. Owing to this effect, there would be no seasonal variation on such Earth-like planets in the habitable zone of low-mass stars. These planets would have huge temperature differences between their poles, which would be in perpetual deep freeze, and their hot equators which in the long run would evaporate any atmosphere. This temperature difference would cause extreme winds and storms.

The second effect of these tides would be to heat up the exoplanet, similar to the tidal heating of Io, a moon of Jupiter that shows global vulcanism.

Finally, tides can cause the rotational period of the planet (the planet’s “day”) to synchronize with the orbital period (the planet’s “year”). This situation is identical to the Earth-moon setup: the moon only shows Earth one face, the other side being known as “the dark side of the moon.” As a result one half of the exoplanet receives extreme radiation from the star while the other half freezes in eternal darkness.

The habitable zone around low-mass stars is therefore not very comfortable — it may even be uninhabitable.

Here is my previous post on the factors needed for a habitable planet. Now we just have one more. I actually find this article sort of odd, because my understanding of stars was that only high-mass stars could support life at all. This is because if the mass of the planet was too low, the habitable zone wouldbe very close to the star. Being too close to the star causes tidal locking, which means that the planet doesn’t spin on its axis at all, and the same side faces the star. This is a life killer.

This astrophysicist who teaches at the University of Wisconsin explains it better than me.

Excerpt:

Higher-mass stars tend to be larger and luminous than their lower-mass counterparts. Therefore, their habitable zones are situated further out. In addition, however, their HZs are much broader. As an illustration,

  • a 0.2 solar-mass star’s HZ extends from 0.1 to 0.2 AU
  • a 1.0 solar-mass star’s HZ extends from 1 to 2 AU
  • a 40 solar-mass star’s HZ extends from 350 to 600 AU

On these grounds, it would seem that high-mass starts are the best candidates for finding planets within a habitable zone. However, these stars emit most of their radiation in the far ultraviolet (FUV), which can be highly damaging to life, and also contributes to photodissociation and the loss of water. Furthermore, the lifetimes of these stars is so short (around 10 million years) that there is not enough time for life to begin.

Very low mass stars have the longest lifetimes of all, but their HZs are very close in and very narrow. Therefore, the chances of a planet being formed within the HZ are small. Additionally, even if a planet did form within the HZ, it would become tidally locked, so that the same hemisphere always faced the star. Even though liquid water might exist on such a planet, the climactic conditions would probably be too severe to permit life.

In between the high- and low-mass stars lie those like our own Sun, which make up about 15% percent of the stars in the galaxy. These have reasonably-broad HZs, do not suffer from FUV irradiation, and have lifetimes of the order of 10 billion years. Therefore, they are the best candidates for harbouring planets where life might be able to begin.

This guy is just someone I found through a web search. He has a support-the-unions-sticker on his web page, so he’s a liberal crackpot. But he makes my point, anyway, so that’s good enough for me.

Maybe the new discovery is talking about this now, but I already knew about the tides and habitability, because I watched The Privileged Planet DVD. Actually that whole video is online, and the clip that talks about the habitable zone and water is linked in this blog post I wrote before.

Filed under: News, , , , , , , , , , , , , , , , , ,

Scientists troubled by lack of simple explanation for our life-permitting moon

This entire article from Evolution News is a must-read. It talks about a recent paper by a naturalist named Robin Canup which appeared in Nature, the most prestigious peer-reviewed science journal.

So, there’s too much to quote here. I’ll grab a few snippets to give you the gist of it, then you click through and read the whole thing. 

The moon is important for the existence of a life permitting planet:

Canup knows our moon is important for life:

The Moon is more than just a familiar sight in our skies. It dictates conditions on Earth. The Moon is large enough to stabilize our planet’s rotation, holding Earth’s polar axis steady to within a few degrees. Without it, the current Earth’s tilt would vary chaotically by tens of degrees. Such large variationsmight not preclude life, but would lead to a vastly different climate.

The moon requires an improbable sequence of events:

Canup states that “No current impact model stands out as more compelling than the rest.” All are equally improbable, in other words. Indeed, they are:

It remains troubling that all of the current impact models invoke a process after the impact to effectively erase a primary outcome of the event — either by changing the disk’s composition through mixing for the canonical impact, or by changing Earth’s spin rate for the high-angular-momentum narratives.

Sequences of events do occur in nature, and yet we strive to avoid such complexity in our models. We seek the simplest possible solution, as a matter of scientific aesthetics and because simple solutions are often more probable. As the number of steps increases, the likelihood of a particular sequence decreases. Current impact models are more complex and seem less probable than the original giant-impact concept.

This is a good challenge to naturalism, but it lends support to one part of the habitability argument.

Previously, I blogged about a few of the minimum requirements that a planet must satisfy in order to support complex life.

Here they are:

  • a solar system with a single massive Sun than can serve as a long-lived, stable source of energy
  • a terrestrial planet (non-gaseous)
  • the planet must be the right distance from the sun in order to preserve liquid water at the surface – if it’s too close, the water is burnt off in a runaway greenhouse effect, if it’s too far, the water is permanently frozen in a runaway glaciation
  • the solar system must be placed at the right place in the galaxy – not too near dangerous radiation, but close enough to other stars to be able to absorb heavy elements after neighboring stars die
  • a moon of sufficient mass to stabilize the tilt of the planet’s rotation
  • plate tectonics
  • an oxygen-rich atmosphere
  • a sweeper planet to deflect comets, etc.
  • planetary neighbors must have non-eccentric orbits

This is a good argument, so if you want to learn more about it, get the “The Privileged Planet” DVD, or the book of the same name.

Filed under: News, , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

How Earth-like are the 8.8 billion Earth-like planets from a recent estimate?

Previously, I blogged about a few of the minimum requirements that a planet must satisfy in order to support complex life.

Here they are:

  • a solar system with a single massive Sun than can serve as a long-lived, stable source of energy
  • a terrestrial planet (non-gaseous)
  • the planet must be the right distance from the sun in order to preserve liquid water at the surface – if it’s too close, the water is burnt off in a runaway greenhouse effect, if it’s too far, the water is permanently frozen in a runaway glaciation
  • the solar system must be placed at the right place in the galaxy – not too near dangerous radiation, but close enough to other stars to be able to absorb heavy elements after neighboring stars die
  • a moon of sufficient mass to stabilize the tilt of the planet’s rotation
  • plate tectonics
  • an oxygen-rich atmosphere
  • a sweeper planet to deflect comets, etc.
  • planetary neighbors must have non-eccentric orbits

Now what happens if we disregard all of that, and just classify an Earth-like planet as one which only has to potentially support liquid water at the surface? Well, you get a very high estimate of Earth-like planets.

Science journalist Denyse O’Leary responds to a recent estimate based on this questionable criterion, which placed the number of Earth-like planets at 8.8 billion.

Excerpt: (links removed)

A current official definition of habitable planets is “in the zone around the star where liquid water could exist,” but the ones discovered so far are unsuitable in many other ways.

Then a new cosmology term hit the media, “super-Earths.” It means “bigger than Earth,” but smaller than gas giant Neptune. Super-Earths could be the most numerous type of planet, in tight orbits around their star — which is actually bad news for life.Nonetheless, some insist, they may be more attractive to life than Earth is. Indeed, the Copernican Principle allows us to assume that some are inhabited already.

In reality, even the rocky exoplanets (known as of early 2013) that are Earth-sized are not Earth-like. For example, the Kepler mission’s first rocky planet find is described as follows: “Although similar in size to Earth, its orbit lasts just 0.84 days, making it likely that the planet is a scorched, waterless world with a sea of lava on its starlit side.” As space program physicist Rob Sheldon puts it, Earth is a rocky planet but so is a solid chunk of iron at 1300 degrees orbiting a few solar radii above the star. In any event, a planet may look Earth-like but have a very different internal structure and atmosphere.”

David Klinghoffer notes that the study is estimating that 8.8 billion number, but the actual number of Earth-like planets we can see is much lower.

He writes:

The study is supposed to be a major step forward because of its unprecedented accuracy:

For the first time, scientists calculated — not estimated — what percent of stars that are just like our sun have planets similar to Earth: 22 percent, with a margin of error of plus or minus 8 percentage points.

Oh! You see, they calculated. They didn’t just estimate.

Because there are probably hundreds of planets missed for every one found, the study did intricate extrapolations to come up with the 22 percent figure — a calculation that outside scientists say is fair.

Oh. They calculated in the sense of “extrapolating” to “come up” with a figure. In other words, they estimated. The figure of “8.8 billion stars with Earth-size planets in the habitable temperature zone” comes down a bit too when you talk about actual planets that have been observed instead of being merely conjectured and “calculated.”

Scientists at a Kepler science conference Monday said they have found 833 new candidate planets with the space telescope, bringing the total of planets they’ve spotted to 3,538, but most aren’t candidates for life.

Kepler has identified only 10 planets that are about Earth’s size circling sun-like stars and are in the habitable zone, including one called Kepler 69-c.

Ah hah. So from the initial, trumpets-blaring figure of 8.8 billion we’re down more realistically to 10. Not 10 billion, just 10. Meanwhile the silence from space continues absolutely unabated.

That’s the way it tends to go with stories like this, the blaring headline and the inevitable letdown.

One part of the AP press release makes the point that the estimate does not include all the minimum requirements for life. For example, you need an atmosphere, as I stated above. Do the estimated 8.8 billion Earth-like planets have an Earth-like atmosphere? How about an oxygen-rich atmosphere, do the 8.8 billion Earth-like planets have that?

NO:

The next step, scientists say, is to look for atmospheres on these planets with powerful space telescopes that have yet to be launched. That would yield further clues to whether any of these planets do, in fact, harbor life.

You know, after the whole global warming hoax, you would think that these headline writers would have learned their lesson about sensationalizing wild-assed guesses in order to scare up more research money. But a lot of true-believing naturalists are just going to read the headline and not the rest of the article, and they will never know that they’ve been had. Again. I love experimental science, but I don’t love the politicization of science. 

Filed under: Polemics, , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

What makes a planet suitable for supporting complex life?

The Circumstellar Habitable Zone (CHZ)

What do you need in order to have a planet that supports complex life? First, you need liquid water at the surface of the planet. But there is only a narrow range of temperatures that can support liquid water. It turns out that the size of the star that your planet orbits around has a lot to do with whether you get liquid water or not. A heavy, metal-rich star allows you to have a habitable planet far enough from the star so  the planet can support liquid water on the planet’s surface while still being able to spin on its axis. The zone where a planet can have liquid water at the surface is called the circumstellar habitable zone (CHZ). A metal-rich star like our Sun is very massive, which moves the habitable zone out further away from the star. If our star were smaller, we would have to orbit much closer to the star in order to have liquid water at the surface. Unfortunately, if you go too close to the star, then your planet becomes tidally locked, like the moon is tidally locked to Earth. Tidally locked planets are inhospitable to life.

Circumstellar Habitable Zone

Circumstellar Habitable Zone

Here, watch a clip from The Privileged Planet: (Clip 4 of 12, full playlist here)

But there’s more.

The Galactic Habitable Zone (GHZ)

So, where do you get the heavy elements you need for your heavy metal-rich star?

You have to get the heavy elements for your star from supernova explosions – explosions that occur when certain types of stars die. That’s where heavy elements come from. But you can’t be TOO CLOSE to the dying stars, because you will get hit by nasty radiation and explosions. So to get the heavy elements from the dying stars, your solar system needs to be in the galactic habitable zone (GHZ) – the zone where you can pickup the heavy elements you need but not get hit by radiation and explosions. The GHZ lies between the spiral arms of a spiral galaxy. Not only do you have to be in between the arms of the spiral galaxy, but you also cannot be too close to the center of the galaxy. The center of the galaxy is too dense and you will get hit with massive radiation that will break down your life chemistry. But you also can’t be too far from the center, because you won’t get enough heavy elements because there are fewer dying stars the further out you go. You need to be in between the spiral arms, a medium distance from the center of the galaxy.

Like this:

Galactic Habitable Zone

Galactic Habitable Zone and Solar Habitable Zone

Here, watch a clip from The Privileged Planet: (Clip 10 of 12, full playlist here)

The GHZ is based on a discovery made by astronomer Guillermo Gonzalez, which made the front cover of Scientific American in 2001. That’s right, the cover of Scientific American. I actually stole the image above of the GHZ and CHZ (aka solar habitable zone) from his Scientific American article (linked above).

These are just a few of the things you need in order to get a planet that supports life.

Here are a few of the more well-known ones:

  • a solar system with a single massive Sun than can serve as a long-lived, stable source of energy
  • a terrestrial planet (non-gaseous)
  • the planet must be the right distance from the sun in order to preserve liquid water at the surface – if it’s too close, the water is burnt off in a runaway greenhouse effect, if it’s too far, the water is permanently frozen in a runaway glaciation
  • the solar system must be placed at the right place in the galaxy – not too near dangerous radiation, but close enough to other stars to be able to absorb heavy elements after neighboring stars die
  • a moon of sufficient mass to stabilize the tilt of the planet’s rotation
  • plate tectonics
  • an oxygen-rich atmosphere
  • a sweeper planet to deflect comets, etc.
  • planetary neighbors must have non-eccentric orbits

By the way, you can watch a lecture with Guillermo Gonzalez explaining his ideas further. This lecture was delivered at UC Davis in 2007. That link has a link to the playlist of the lecture, a bio of the speaker, and a summary of all the topics he discussed in the lecture. An excellent place to learn the requirements for a suitable habitat for life.

Filed under: Polemics, , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Wintery Tweets

Click to see recent visitors

  Visitors Online Now

Page views since 1/30/09

  • 3,941,723 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 1,725 other followers

Archives

Follow

Get every new post delivered to your Inbox.

Join 1,725 other followers

%d bloggers like this: