Wintery Knight

…integrating Christian faith and knowledge in the public square

Astronomer Guillermo Gonzalez lectures on intelligent design and habitability

The 5 video clips that make up the full lecture.

The playlist for all 5 clips is here.

About the speaker

Guillermo Gonzalez is an Associate Professor of Physics at Grove City College. He received his Ph.D. in Astronomy in 1993 from the University of Washington. He has done post-doctoral work at the University of Texas, Austin and at the University of Washington and has received fellowships, grants and awards from such institutions as NASA, the University of Washington, the Templeton Foundation, Sigma Xi (scientific research society) and the National Science Foundation.

Learn more about the speaker here.

The lecture

Here’s part 1 of 5:

And the rest are here:

Topics:

  • What is the Copernican Principle?
  • Is the Earth’s suitability for hosting life rare in the universe?
  • Does the Earth have to be the center of the universe to be special?
  • How similar to the Earth does a planet have to be to support life?
  • What is the definition of life?
  • What are the three minimal requirements for life of any kind?
  • Requirement 1: A molecule that can store information (carbon)
  • Requirement 2: A medium in which chemicals can interact (liquid water)
  • Requirement 3: A diverse set of chemical elements
  • What is the best environment for life to exist?
  • Our place in the solar system: the circumstellar habitable zone
  • Our place in the galaxy: the galactic habitable zones
  • Our time in the universe’s history: the cosmic habitable age
  • Other habitability requirements (e.g. – metal-rich star, massive moon, etc.)
  • The orchestration needed to create a habitable planet
  • How different factors depend on one another through time
  • How tweaking one factor can adversely affect other factors
  • How many possible places are there in the universe where life could emerge?
  • Given these probabilistic resources, should we expect that there is life elsewhere?
  • How to calculate probabilities using the “Product Rule”
  • Can we infer that there is a Designer just because life is rare? Or do we need more?

The corelation between habitability and measurability.

  • Are the habitable places in the universe also the best places to do science?
  • Do the factors that make Earth habitable also make it good for doing science?
  • Some places and times in the history of the universe are more habitable than others
  • Those exact places and times also allow us to make scientific discoveries
  • Observing solar eclipses and structure of our star, the Sun
  • Observing stars and galaxies
  • Observing the cosmic microwave background radiation
  • Observing the acceleration of the universe caused by dark matter and energy
  • Observing the abundances of light elements like helium of hydrogen
  • These observations support the big bang and fine-tuning arguments for God’s existence
  • It is exactly like placing observatories on the tops of mountains
  • There are observers existing in the best places to observe things
  • This is EXACTLY how the universe has been designed for making scientific discoveries

This lecture was delivered by Guillermo Gonzalez in 2007 at the University of California at Davis.

Filed under: Videos, , , , , , , , , , , , , , , , , , , ,

Is silicon-based life a possible alternative for carbon-based life?

In a recent debate, atheist philosopher Alex Rosenberg responded to the cosmic fine-tuning argument presented by William Lane Craig by asserting that complex life could be other than it is. He specifically mentioned silicon-based life.

Let’s see what scientists think of his speculation, using this article from Scientific American.

Excerpt:

Group IV of the Periodic Table of the Elements contains carbon (C), silicon (Si) and several heavy metals. Carbon, of course, is the building block of life as we know it. So is it possible that a planet exists in some other solar system where silicon substitutes for carbon? Several science fiction stories feature silicon-based life-forms–sentient crystals, gruesome golden grains of sand and even a creature whose spoor or scat was bricks of silica left behind. The novellas are good reading, but there are a few problems with the chemistry.

Indeed, carbon and silicon share many characteristics. Each has a so-called valence of four–meaning that individual atoms make four bonds with other elements in forming chemical compounds. Each element bonds to oxygen. Each forms long chains, called polymers, in which it alternates with oxygen. In the simplest case, carbon yields a polymer called poly-acetal, a plastic used in synthetic fibers and equipment. Silicon yields polymeric silicones, which we use to waterproof cloth or lubricate metal and plastic parts.

But when carbon oxidizes–or unites with oxygen say, during burning–it becomes the gas carbon dioxide; silicon oxidizes to the solid silicon dioxide, called silica. The fact that silicon oxidizes to a solid is one basic reason as to why it cannot support life. Silica, or sand is a solid because silicon likes oxygen all too well, and the silicon dioxide forms a lattice in which one silicon atom is surrounded by four oxygen atoms. Silicate compounds that have SiO4-4 units also exist in such minerals as feldspars, micas, zeolites or talcs. And these solid systems pose disposal problems for a living system.

So, first of all, it makes SAND. Second of all, it is so attracted to oxygen that it can’t easily join to make any other polymers that could be used in the chemistry of the minimal functions of a living system.

More:

Also consider that a life-form needs some way to collect, store and utilize energy. The energy must come from the environment. Once absorbed or ingested, the energy must be released exactly where and when it is needed. Otherwise, all of the energy might liberate its heat at once, incinerating the life-form. In a carbon-based world, the basic storage element is a carbohydrate having the formula Cx(HOH)y. This carbohydrate oxidizes to water and carbon dioxide, which are then exchanged with the air; the carbons are connected by single bonds into a chain, a process called catenation. A carbon-based life-form “burns” this fuel in controlled steps using speed regulators called enzymes.

These large, complicated molecules do their job with great precision only because they have a property called “handedness.” When any one enzyme “mates” with compounds it is helping to react, the two molecular shapes fit together like a lock and key, or a shake of hands. In fact, many carbon-based molecules take advantage of right and left-hand forms. For instance, nature chose the same stable six-carbon carbohydrate to store energy both in our livers (in the form of the polymer called glycogen) and in trees (in the form of the polymer cellulose).

Glycogen and cellulose differ mainly in the handedness of a single carbon atom, which forms when the carbohydrate polymerizes, or forms a chain. Cellulose has the most stable form of the two possibilities; glycogen is the next most stable. Because humans don’t have enzymes to break cellulose down into its basic carbohydrate, we cannot utilize it as food. But many lower life-forms, such as bacteria, can.

In short, handedness is the characteristic that provides a variety of biomolecules with their ability to recognize and regulate sundry biological processes. And silicon doesn’t form many compounds having handedness. Thus, it would be difficult for a silicon-based life-form to achieve all of the wonderful regulating and recognition functions that carbon-based enzymes perform for us.

The troubling thing I find about atheists is that they seem to be under the impression that an alternative speculative explanation is a refutation of an argument that is based in evidence.

So it goes like this:

  • origin of the universe? I can speculate about a naturalistic alternative cosmology which is falsified by observations
  • cosmic fine-tuning? I can speculate about an untestable multiverse
  • origin of life? I can speculate about unobservable aliens who seeded the Earth with life
  • Cambrian explosion? I can speculate about intermediary fossils that have not yet been discovered
  • habitability? I can speculate that habitable planets exist just outside the boundary of the observable universe
  • resurrection of Jesus? I can speculate that Jesus had an unknown, identical twin brother who showed up when he died and took his place

I think that if we are going to make a worldview, we should ground it in the evidence we have today. We should not have faith in speculative theories that we heard about on Star Trek. Seriously.

Filed under: Polemics, , , , , , , ,

The connection between our moon, plate tectonics and habitability

I found an interview with Peter Ward (atheist) and Donald Brownlee (agnostic) discussing astrobiology in Forbes magazine. They were asked about how important plate tectonics are for a planet to be able to support complex life.

Excerpt:

Astrobiologists often cite the sheer numbers of stars and galaxies as evidence that complex life elsewhere must surely have evolved somewhere. But is probability enough?

Without a moon, we don’t have any idea of how commonly a planet could have the long-term stability needed for complex life. Until we “get” that, going to the sheer numbers argument is useless. Without that moon-forming collision, we wouldn’t have plate tectonics. Without plate tectonics, we might have microbes but we’d never get to animals.

What about the rarity of earth’s crustal dichotomy of oceans and continents?

If you can’t make granite, you’re not going to have continents. But granite formation is a consequence of our moon-forming collision. That scrambled the entire density of our crust. Mars doesn’t have granite; all it’s got is this volcanic basalt. To build granite you need a planetary subduction [or plate tectonic] process.

In triggering complex life, how important were plate tectonics’ role in the continual recycling of earth’s atmosphere?

It’s this recycling that allows for a very rich planetary atmosphere with an extended life. Photosynthesis gets you oxygen, but how do you get enough photosynthesis to get oxygen at 10 to 20 percent? You’ve got to have a shoreline next to a rich sea with rocks eroding into it in order to provide the nitrogen and phosphates for [plant] photosynthesis.

This article from Astrobiology explains more about the importance of plate tectonics.

Excerpt:

Plate tectonics is the process of continents on the Earth drifting and colliding, rock grinding and scraping, mountain ranges being formed, and earthquakes tearing land apart. It makes our world dynamic and ever-changing. But should it factor into our search for life elsewhere in the universe?

Tilman Spohn believes so. As director of the German Space Research Centre Institute of Planetary Research, and chairman of ESA’s scientific advisory committee, he studies worlds beyond our Earth. When looking into the relationship between habitability and plate tectonics, some fascinating possibilities emerged.

It is thought that the best places to search for life in the Universe are on planets situated in “habitable zones” around other stars. These are orbital paths where the temperature is suitable for liquid water; not so close to the star that it boils away, and not so far that it freezes. Spohn believes that this view may be outdated. He elaborates, “you could have habitats outside those, for instance in the oceans beneath ice covers on the Galilean satellites, like Europa. But not every icy satellite would be habitable. Take Ganymede, where the ocean is trapped between two layers of ice. You are missing a fresh supply of nutrition and energy.”

So planets and moons that lie beyond habitable zones could host life, so long as the habitat, such as an ocean, is not isolated. It needs access to the key ingredients of life, including hydrogen, oxygen, nitrogen, phosphorous and sulphur. These elements support the basic chemistry of life as we know it, and the material, Spohn argues, must be regularly replenished. Nature’s method of achieving this on the Earth appears to be plate tectonics.

Spohn found that the further he delved into the issue, the more important plate tectonics seemed to be for life. For example, it is believed that life developed by moving from the ocean to the kind of strong and stable rock formations that are the result of tectonic action. Plate tectonics is also involved in the generation of a magnetic field by convection of Earth’s partially molten core. This magnetic field protects life on Earth by deflecting the solar wind. Not only would an unimpeded solar wind erode our planet’s atmosphere, but it also carries highly energetic particles that could damage DNA.

Another factor is the recycling of carbon, which is needed to stabilize the temperature here on Earth. Spohn explains, “plate tectonics is known to recycle carbon that is washed out of the atmosphere and digested by bacteria in the soil into the interior of the planet from where it can be outcast through volcanic activity. Now, if you have a planet without plate tectonics, you may have parts of this cycle, but it is broken because you do not have the recycling link.”

It has also been speculated that the lack of tectonic action on Venus contributed to its runaway greenhouse effect, which resulted in the immense temperatures it has today.

Most planets don’t have a moon as massive as ours is, and the collision that formed the moon is very fine-tuned for life. This is just one of the many factors that needs to be present in order to have a planet that supports complex, carbon-based life.

Filed under: Polemics, , , , , ,

Jupiter deflects comets and asteroids that might otherwise hit Earth

Circumstellar Habitable Zone

Circumstellar Habitable Zone

This is an older article from Astrobiology magazine, but it shows how important Jupiter is for habitability.

Excerpt:

To a biologist, the ingredients needed to form life include water, heat and organic chemicals. But some in the astrophysics and astronomy community argue that life, at least advanced life, may require an additional component: a Jupiter-sized planet in the solar neighborhood.

“A long-period Jupiter may be a prerequisite for advanced life,” said Dr. Alan Boss, a researcher in planetary formation. Boss, who works at the Carnegie Institution of Washington, is a member of the NASA Astrobiology Institute (NAI).

In our own solar system, Jupiter, with its enormous gravitational field, plays an important protective role. By deflecting comets and asteroids that might otherwise hit Earth, Jupiter has helped to create a more stable environment for life to evolve here. It’s generally believed that a massive impact was responsible 65 million years ago for wiping out dinosaurs on Earth. If not for Jupiter, it’s possible that many other such impacts would have occurred throughout Earth’s history, preventing advanced life from ever gaining a foothold.

Jupiter is significant not only for its size but also for its location in our solar system, far from the Sun. Because it orbits at slightly more than 5 AU (astronomical units the distance between the Earth and the Sun is 1 AU), there is plenty of room in the inner part of our Solar System to accommodate a range of smaller planets.

Within the inner solar system there exists a region, known as the habitable zone, where liquid water, and therefore life, can potentially exist on a planet’s surface. Without liquid water, life as we know it is not possible. The habitable zone around our Sun stretches roughly from the orbit of Venus to the orbit of Mars. Venus is generally believed to be too hot to support life. Earth, it appears, is just right. And the jury is still out on Mars.

Understanding the role that Jupiter plays in our own Solar System helps astronomers focus their search for habitable planets around other stars. “If,” Boss explains, “a Jupiter-mass planet on a stable, circular orbit [around another star at] around 4 to 5 AU was found, without any evidence for other gas giant planets with shorter period orbits, such a discovery would be like a neon light in the cosmos pointed toward that star, saying ‘Look here!’. That star would be a prime target for looking for a habitable, Earth-like planet.”

Previously, I blogged about how the circular orbit of Saturn and the mass of our star also play a role in making our planet habitable.

People who are not curious about science sort of take these blessings for granted and push away the God who is responsible for the clever life-permitting design of our habitat. In contrast, theists are curious and excited about what science tells us about the Creator. Theists care about science, but naturalists have to sort of keep experimental science at arm’s length – away from the presuppositions and assumptions that allow them to have autonomy to live life without respect, accountability and gratitude. Naturalists take refuge in the relief provided by speculative science and science fiction. They like to listen to their leaders speculate about speculative theories, and willingly buy up books by snarky speculators who think that nothing is really something (Krauss), or who think that the cosmic fine-tuning is not real (Stenger), or who think that silicon-based life is a viable scenario (Rosenberg), etc. But theists prefer actual science. Truth matters to us, and we willingly adjust our behavior to fit the scientific facts.

UPDATE: Rebuttal to me here at The Secular Outpost.

Filed under: Polemics, , , , , , , , , , , , , ,

How common is it for a star to support complex, embodied life?

Circumstellar Habitable Zone

Circumstellar Habitable Zone

I blogged a while back about the need for a star to be massive, in order to push out the habitable zone far enough that the planet in the zone does not get tidally locked, killing the planet’s ability to support life. Recently, I blogged about another factor that’s needed – large planets further out which catch comets for us have to have a circular orbit, or they will pull us out of the habitable zone.

That’s two factors. But here’s an article from Evolution News that talks about liquid water and tidal locking, but it has even more factors that need to be fine-tuned for habitability.

Excerpt:

Stars with masses of 0.1-0.5 solar mass make up 75 percent of the stars in our Milky Way galaxy.6 These represent the red dwarfs, the M class. But these stars have low effective temperatures, and thus emit their peak radiation at longer wavelengths (red and near-infrared).7 They can have stable continuously habitable zones over long time scales, up to 10 billion years, barring other disruptions. It is also easier to detect terrestrial sized planets around them.8 But a serious problem with red dwarf stars in the K and M classes is their energetic flares and coronal mass ejection events. Potentially habitable planets need to orbit these stars closer, to be in these stars’ habitable zones. Yet the exposure to their stellar winds and more frequent and energetic flares becomes a serious issue for habitability. Because of these stars’ smaller mass, ejections get released with more violence.9 Any planet’s atmosphere would be subject to this ionizing radiation, and likely expose any surface life to much more damaging radiation.10 The loss of atmospheres in these conditions is likely, but the timescales are dependent on several factors including the planet’s mass, the extent of its atmosphere, the distance from the parent star, and the strength of the planet’s magnetic field.11 To protect its atmosphere for a long period, like billions of years, a planet with more mass and thus higher gravity could hold on to the gases better. But this larger planet would then hold on to lighter gases, like hydrogen and helium, and prevent an atmosphere similar to Earth’s from forming.12 Another consequence is that the increased surface pressure would prevent water from being in the liquid phase.13

So again, you need to have a huge, massive star in order to hold the planet in orbit over LONG distances. If it’s a short distance, you not only have the tidal-locking problem, but you also have this solar activity problem (flares, coronal ejections).

But wait! There’s more:

Another stellar parameter for advanced life has to do with UV (ultra-violet) radiation. The life-support star must provide just enough UV radiation, but not too much. UV radiation’s negative effects on DNA are well known, and any life support body must be able to sustain an atmosphere to shield them. Yet the energy from UV radiation is also needed for biochemical reactions. So life needs enough UV radiant to allow chemical reactions, but not so much as to destroy complex carbon molecules like DNA. Just this flux requirement alone requires the host star have a minimum stellar mass of 0.6 solar masses, and a maximum mass of 1.9 solar masses.14

So the ultra-violet radiation that is emitted has to be finely-tuned. (I’m guessing this assumes some sort of chemical origin-of-life scenario)

Still more:

Another requirement for habitable planets is a strong magnetic field to prevent their atmosphere from being lost to the solar winds. Planets orbiting a red dwarf star are also more affected by the star’s tidal effects, slowing the planet’s rotation rate. It is thought that strong magnetic fields are generated in part by the planet’s rotation.15 If the planet is tidally braked, then any potential for a significant magnetic field is likely to be seriously degraded. This will lead to loss of water and other gases from the planet’s atmosphere to the stellar winds.16 We see this in our solar system, where both Mercury and Venus, which orbit closer to the Sun than Earth, have very slow rotation rates, and very modest magnetic fields. Mercury has very little water, and surprisingly, neither does Venus. Even though Venus has a very dense atmosphere, it is very dry. This is due to UV radiation splitting the water molecules when they get high in the atmosphere, and then the hydrogen is lost to space, primarily, again, by solar wind.17

You have to hold on to your umbrella (atmosphere), or you get hit with dangerous rain (solar winds).

So a few more factors there, and remember, this is just the tip of the iceberg when it comes to circumstellar habitability constraints.

Filed under: Polemics, , , , , , , ,

Wintery Tweets

Error: Twitter did not respond. Please wait a few minutes and refresh this page.

RSS Intelligent Design podcast

  • An error has occurred; the feed is probably down. Try again later.

RSS Evolution News

  • An error has occurred; the feed is probably down. Try again later.
Click to see recent visitors

  Visitors Online Now

Page views since 1/30/09

  • 4,693,494 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,276 other followers

Archives

Follow

Get every new post delivered to your Inbox.

Join 2,276 other followers

%d bloggers like this: