Wintery Knight

…integrating Christian faith and knowledge in the public square

What makes a planet suitable for supporting complex life?

The Circumstellar Habitable Zone (CHZ)

What do you need in order to have a planet that supports complex life? First, you need liquid water at the surface of the planet. But there is only a narrow range of temperatures that can support liquid water. It turns out that the size of the star that your planet orbits around has a lot to do with whether you get liquid water or not. A heavy, metal-rich star allows you to have a habitable planet far enough from the star so  the planet can support liquid water on the planet’s surface while still being able to spin on its axis. The zone where a planet can have liquid water at the surface is called the circumstellar habitable zone (CHZ). A metal-rich star like our Sun is very massive, which moves the habitable zone out further away from the star. If our star were smaller, we would have to orbit much closer to the star in order to have liquid water at the surface. Unfortunately, if you go too close to the star, then your planet becomes tidally locked, like the moon is tidally locked to Earth. Tidally locked planets are inhospitable to life.

Circumstellar Habitable Zone

Circumstellar Habitable Zone

Here, watch a clip from The Privileged Planet: (Clip 4 of 12, full playlist here)

But there’s more.

The Galactic Habitable Zone (GHZ)

So, where do you get the heavy elements you need for your heavy metal-rich star?

You have to get the heavy elements for your star from supernova explosions – explosions that occur when certain types of stars die. That’s where heavy elements come from. But you can’t be TOO CLOSE to the dying stars, because you will get hit by nasty radiation and explosions. So to get the heavy elements from the dying stars, your solar system needs to be in the galactic habitable zone (GHZ) – the zone where you can pickup the heavy elements you need but not get hit by radiation and explosions. The GHZ lies between the spiral arms of a spiral galaxy. Not only do you have to be in between the arms of the spiral galaxy, but you also cannot be too close to the center of the galaxy. The center of the galaxy is too dense and you will get hit with massive radiation that will break down your life chemistry. But you also can’t be too far from the center, because you won’t get enough heavy elements because there are fewer dying stars the further out you go. You need to be in between the spiral arms, a medium distance from the center of the galaxy.

Like this:

Galactic Habitable Zone

Galactic Habitable Zone and Solar Habitable Zone

Here, watch a clip from The Privileged Planet: (Clip 10 of 12, full playlist here)

The GHZ is based on a discovery made by astronomer Guillermo Gonzalez, which made the front cover of Scientific American in 2001. That’s right, the cover of Scientific American. I actually stole the image above of the GHZ and CHZ (aka solar habitable zone) from his Scientific American article (linked above).

These are just a few of the things you need in order to get a planet that supports life.

Here are a few of the more well-known ones:

  • a solar system with a single massive Sun than can serve as a long-lived, stable source of energy
  • a terrestrial planet (non-gaseous)
  • the planet must be the right distance from the sun in order to preserve liquid water at the surface – if it’s too close, the water is burnt off in a runaway greenhouse effect, if it’s too far, the water is permanently frozen in a runaway glaciation
  • the solar system must be placed at the right place in the galaxy – not too near dangerous radiation, but close enough to other stars to be able to absorb heavy elements after neighboring stars die
  • a moon of sufficient mass to stabilize the tilt of the planet’s rotation
  • plate tectonics
  • an oxygen-rich atmosphere
  • a sweeper planet to deflect comets, etc.
  • planetary neighbors must have non-eccentric orbits

By the way, you can watch a lecture with Guillermo Gonzalez explaining his ideas further. This lecture was delivered at UC Davis in 2007. That link has a link to the playlist of the lecture, a bio of the speaker, and a summary of all the topics he discussed in the lecture. An excellent place to learn the requirements for a suitable habitat for life.

Filed under: Polemics, , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Darwinists thought whale hips were accidents of evolution, then science happened

Another win for reason in the long war between science and naturalistic philosophy.

Science Daily reports.

Excerpt:

Both whales and dolphins have pelvic (hip) bones, evolutionary remnants from when their ancestors walked on land more than 40 million years ago. Common wisdom has long held that those bones are simply vestigial, slowly withering away like tailbones on humans.

New research from USC and the Natural History Museum of Los Angeles County (NHM) flies directly in the face of that assumption, finding that not only do those pelvic bones serve a purpose — but their size and possibly shape are influenced by the forces of sexual selection.

“Everyone’s always assumed that if you gave whales and dolphins a few more million years of evolution, the pelvic bones would disappear. But it appears that’s not the case,” said Matthew Dean, assistant professor at the USC Dornsife College of Letters, Arts and Sciences, and co-corresponding author of a paper on the research that was published online by Evolution on Sept. 3.

[...]“Our research really changes the way we think about the evolution of whale pelvic bones in particular, but more generally about structures we call ‘vestigial.’ As a parallel, we are now learning that our appendix is actually quite important in several immune processes, not a functionally useless structure,” Dean said.

This is not the first time this has happened – as they said, the appendix now has known functionality.

Flashback: ENCODE study falsifies Darwinian prediction that most of the genome is “Junk” DNA.

Filed under: Polemics, , , , , , ,

Stephen C. Meyer and Marcus Ross lecture on the Cambrian explosion

Access Research Network is a group that produces recordings  of lectures and debates related to intelligent design. I noticed that on their Youtube channel they are releasing some of their older lectures and debates for FREE. So I decided to write a summary of one that I really like on the Cambrian explosion. This lecture features Dr. Stephen C. Meyer and Dr. Marcus Ross.

The lecture is about two hours. There are really nice slides with lots of illustrations to help you understand what the speakers are saying, even if you are not a scientist.

Here is a summary of the lecture from ARN:

The Cambrian explosion is a term often heard in origins debates, but seldom completely understood by the non-specialist. This lecture by Meyer and Ross is one of the best overviews available on the topic and clearly presents in verbal and pictorial summary the latest fossil data (including the recent finds from Chengjiang China). This lecture is based on a paper recently published by Meyer, Ross, Nelson and Chien “The Cambrian Explosion: Biology’s Big Bang” in Darwinism, Design and Public Education(2003, Michigan State University Press). This 80-page article includes 127 references and the book includes two additional appendices with 63 references documenting the current state of knowledge on the Cambrian explosion data. 

The term Cambrian explosion describes the geologically sudden appearance of animals in the fossil record during the Cambrian period of geologic time. During this event, at least nineteen, and perhaps as many as thirty-five (of forty total) phyla made their first appearance on earth. Phyla constitute the highest biological categories in the animal kingdom, with each phylum exhibiting a unique architecture, blueprint, or structural body plan. The word explosion is used to communicate that fact that these life forms appear in an exceedingly narrow window of geologic time (no more than 5 million years). If the standard earth’s history is represented as a 100 yard football field, the Cambrian explosion would represent a four inch section of that field.

For a majority of earth’s life forms to appear so abruptly is completely contrary to the predictions of Neo-Darwinian and Punctuated Equilibrium evolutionary theory, including:

  • the gradual emergence of biological complexity and the existence of numerous transitional forms leading to new phylum-level body plans;
  • small-scale morphological diversity preceding the emergence of large-scale morphological disparity; and
  • a steady increase in the morphological distance between organic forms over time and, consequently, an overall steady increase in the number of phyla over time (taking into account factors such as extinction).

After reviewing how the evidence is completely contrary to evolutionary predictions, Meyer and Ross address three common objections: 1) the artifact hypothesis: Is the Cambrian explosion real?; 2) The Vendian Radiation (a late pre-Cambrian multicellular organism); and 3) the deep divergence hypothesis.

Finally Meyer and Ross argue why design is a better scientific explanation for the Cambrian explosion. They argue that this is not an argument from ignorance, but rather the best explanation of the evidence from our knowledge base of the world. We find in the fossil record distinctive features or hallmarks of designed systems, including:

  • a quantum or discontinuous increase in specified complexity or information
  • a top-down pattern of scale diversity
  • the persistence of structural (or “morphological”) disparities between separate organizational systems; and
  • the discrete or novel organizational body plans

When we encounter objects that manifest any of these several features and we know how they arose, we invariably find that a purposeful agent or intelligent designer played a causal role in their origin.

Recorded April 24, 2004. Approximately 2 hours including audience Q&A.

You can get a DVD of the lecture and other great lectures from Access Research Network. I recommend their origin of life lectures – I have watched the ones with Dean Kenyon and Charles Thaxton probably a dozen times each. Speaking as an engineer, you never get tired of seeing engineering principles applied to questions like the origin of life.

The Cambrian explosion lecture above is a great intermediate-level lecture and will prepare you to be able to understand Dr. Meyer’s new book “Darwin’s Doubt: The Explosive Origin of Animal Life and the Case for Intelligent Design“. The Michigan State University book that Dr. Meyer mentions is called “Darwin, Design and Public Education“. That book is one of the two good collections on intelligent design published by academic university presses, the other one being from Cambridge University Press, and titled “Debating Design: From Darwin to DNA“. If you think this lecture is above your level of understanding, then be sure and check out the shorter and more up-to-date DVD “Darwin’s Dilemma“.

Filed under: Videos, , , , , , , , , , , , , , , , ,

Shorebird’s beak inspires researchers to design new water collection strategy

The shorebird's beak is more interesting than you might think

The shorebird’s beak is more interesting than you might think

Dr. Fazale Rana of Reasons to Believe tweeted this cool example of biomimetics from Science Daily.

Excerpt:

A UT Arlington engineering professor and his doctoral student have designed a device based on a shorebird’s beak that can accumulate water collected from fog and dew.

The device could provide water in drought-stricken areas of the world or deserts around the globe.

Xin Heng… a doctoral student in Mechanical and Aerospace Engineering, and Cheng Luo, MAE professor, have made a device that can use fog and dew to collect water.

Cheng Luo, professor in the Mechanical & Aerospace Engineering Department, and Xin Heng, PhD candidate in the same College of Engineering department, published “Bioinspired Plate-Based Fog Collectors” in the Aug. 25 edition of ACS’ (American Chemical Society) Applied Materials & Interfaces journal.

The idea began when Heng saw an article that explained the physical mechanism shorebirds use to collect their food — driving food sources into their throats by opening and closing their beaks. Luo said that inspired the team to try to replicate the natural beak in the lab.

“We wanted to see if we could do that first,” Luo said. “When we made the artificial beaks, we saw that multiple water drops were transported by narrow, beak-like glass plates. That made us think of whether we could harvest the water from fog and dew.”

Their experiments were successful. They found out they could harvest about four tablespoons of water in a couple of hours from glass plates that were about 26 centimeters long by 10 centimeters wide.

Now, if we are lifting designs out of nature, then shouldn’t we give honor to God for putting the designs in there in the first place? I really think it’s important to give God credit where due for his clever designs, even if you’re not a big fan of the shorebird. I also think it’s interesting that it’s engineers who made this application of something in nature, not biologists.  Also, I feel I have to mention that the birdy is also cute, which is not insignificant, if you like birds as much as I do.

Filed under: News, , , , , , ,

How brief was the period in which the Cambrian phyla suddenly appeared?

The Cambrian explosion refers to the sudden appearance of new body plans in the fossil record. ID proponents think that the period is between 5-10 million years at the most. Naturalists want to stretch out the period in which the body plans appear to tens of millions of years. The two sides can’t both be right. What’s the truth?

Evolution News has the answer.

Excerpt:

To establish the length of the most explosive period of innovation within the Cambrian explosion itself, Meyer cites the work of MIT geochronologist Samuel Bowring and his colleagues as well the work of another group led by Smithsonian paleontologist Douglas Erwin. The Bowring-led study showed that (in their words) “the main period of exponential diversification” within the Cambrian lasted “only 5-6 million years” (emphasis added). Meyer explains:

An analysis by MIT geochronologist Samuel Bowring has shown that the main pulse of Cambrian morphological innovation occurred in a sedimentary sequence spanning no more than 6 million years. Yet during this time representatives of at least sixteen completely novel phyla and about thirty classes first appeared in the rock record. In a more recent paper using a slightly different dating scheme, Douglas Erwin and colleagues similarly show that thirteen new phyla appear in a roughly 6-million-year window. (p. 73)

[...][T]ake a look first at the following figure that Bowring and his colleagues included in their definitive 1993 article, published in the journal Science. They use radiometric methods to date the different stages of the Cambrian period, including the crucial Tommotian and Atdabanian stages in which the greatest number of new animal phyla and classes arise. Note that the so-called Manykaian stage of the Cambrian period lasts about 10-14 million years. Note also that the main pulse of morphological innovation didn’t begin during this stage but rather during the Tommotian and Atdabanian — a period that they describe as taking between “5 to 10 million years,” and in a more detailed passage as taking about 5-6 million years.

[...]In the figure above, the Tommotian and Atdabanian stages of the Cambrian period together span only about 5 million years, starting at about 530 and ending about 525 million years ago. Bowring’s figure also depicts the total number of classes and orders present at any given time during the Cambrian period. The biggest increases in morphological innovation occur during the Tommotian and Atdabanian stages. Indeed, during this period the number of known orders nearly quadruples. Moreover, Bowring and his colleagues also make clear that this period corresponds to the main pulse of Cambrian morphological innovation as measured by the number of new phyla and classes that first appear. They note that, while a few groups of animals do arise in the earliest Manykaian stage of the Cambrian, the most rapid period of “exponential increase of diversification,” corresponding to the Tommotian and Atdabanian stages, “lasted only 5 to 6 m.y.”

You can see the figure they are reference in the Evolution News article.

Also, check out these clips that explain the Cambrian explosion:

Part 1:

Part 2:

The first clip features James Valentine, a professor of biology at the University of California who just co-authored a new book on the Cambrian explosion and is not a proponent of intelligent design.

The consensus among scientists regarding the period of time in which the new body plans appear is 5-6 million years. Biologically speaking, that’s a blink of an eye. You aren’t going that kind of complexity and innovation in such a short period of time any more than you can expect to win the lottery by buying 5-6 million tickets when the odds of winning are 1 in a googol (10 to the 100th power – 1, followed by 100 zeroes). You don’t have enough lottery tickets to make winning the lottery likely. Similarly, 5-6 million years is not enough time for naturalistic mechanisms to code brand new body plans from scratch. It would be like trying to research and write a Ph.D thesis during a single lunch hour. It’s just not enough time to produce the amount of information that’s required.

Filed under: Polemics, , , , , , , , , , , ,

Wintery Tweets

Error: Twitter did not respond. Please wait a few minutes and refresh this page.

RSS Intelligent Design podcast

  • An error has occurred; the feed is probably down. Try again later.

RSS Evolution News

  • An error has occurred; the feed is probably down. Try again later.
Click to see recent visitors

  Visitors Online Now

Page views since 1/30/09

  • 4,511,853 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,155 other followers

Archives

Follow

Get every new post delivered to your Inbox.

Join 2,155 other followers

%d bloggers like this: