Wintery Knight

…integrating Christian faith and knowledge in the public square

Overview of the fine-tuning argument and some objections to it

There are four posts in the series, so far. I think Allen might be done, so I’m going to link to all four and snip something I like from each one.

The first post is on whether the fine-tuning is real, and whether a multiverse explains the fine-tuning so that there is no need for a cosmic Designer.

I just have to choose this quote from the atheist Stephen Hawking on the fine-tuning:

The remarkable fact is that the values of these numbers [i.e. the constants of physics] seem to have been very finely adjusted to make possible the development of life. For example, if the electric charge of the electron had been only slightly different, stars would have been unable to burn hydrogen and helium, or else they would not have exploded. It seems clear that there are relatively few ranges of values for the numbers [i.e. the constants of nature] that would allow for development of any form of intelligent life.

And from Luke Barnes, who I’ve mentioned before on this blog:

In my years of researching this topic, I’m amazed at how few scientists who have studied the fine-tuning details disagree with this core claim that the subset of life-permitting physics is a tiny fraction among possibilities. Since Luke Barnes is a top researcher on this topic, consider his input on the level of acceptance of the fine-tuning claim: “I’ve published a review of the scientific literature, 200+ papers, and I can only think of a handful that oppose this conclusion, and piles and piles that support it.[3]

And on the multiverse as a way to escape the fine-tuning:

The key issue though is that for the multiverse to be an adequate explanation for the fine-tuning it requires the conjunction of several hypotheses for which we lack any empirical evidence:

  1. A universe-generating mechanism that generates a plethora of universes
  2. That this mechanism doesn’t itself require fine-tuning
  3. The many-worlds interpretation of quantum physics
  4. The ability to widely vary constants in those universes. If you think that it’s a foregone conclusion that String Theory/M-Theory[8] will come to the rescue in this area, you should watch this video clip by Oxford physicist Roger Penrose where he exclaims that “it’s not even a theory … it’s a collection of hopes”.

Occam’s razor therefore does seem to favor design over the multiverse. When one accounts for the extensive problems in affirming premise 2 and how these multiverse theories make predictions incompatible with our universe, the hypothesis that God designed the physics of the universe to bring about life is more plausible.

Here’s the second post, where he explains the fine-tuning argument philosophically, and gives an example of one of the constants that has to be fine-tuned in order to support complex, embodied intelligence of any kind.

The cosmological constant:

The inference to design will be more easily recognized if we shed some light as to the specialness of the required values. Consider the size of the bull’s eye and wall based on just 1 parameter – the cosmological constant. There is a natural range for possible values for this constant because there are known contributions that are 10120times larger than the overall net value. (There is a near perfect but inexact cancellation of contributions accurate to 120 decimal places). Let’s use the most conservative numbers in the physics literature that indicate a fine-tuning to 1 part in 1053. If the cosmological constant, which governs the expansion rate of the universe, had been larger than its current value by this tiny fraction, then the universe would have expanded so fast that no stars or planets would have formed and therefore no life. If the value were smaller by this amount then the universe would have rapidly collapsed before the universe cooled sufficiently to allow for stable information storage which is required by any self-replicating system such as life.

In the third post, he responds to objections to the fine-tuning argument. One objection you hear from atheists who don’t understand the science is that any selection of constants and quantities is as likely as any other, so our life-permitting set is just random. Now, first off, there are only 10 to the 80 atoms in the visible universe, so if the cosmological constant is fine-tuned to 1 in 10 to the 120, it’s not rational to say “it just happened randomly”.

But here is Allen’s response:

However, the assumption that any set of constants is just as likely as any other is the very thing that we want to know. Starting off with that as an assumption begs the question against design. As Luke Barnes articulates in this excellent podcast dealing with responses to the fine-tuning claim, suppose we’re playing poker and every time I deal I get a royal flush. If this continues to happen, you become increasingly convinced that I’m likely to be cheating. If I responded to an accusation of cheating by just saying “well any set of 5 cards is just as likely as any other so you can’t accuse me of cheating” you would be rational to reject this explanation. The question is not “how likely is any set of 5 cards?” but rather “how likely is it I’m cheating if I just dealt myself 10 straight royal flushes?” This question accounts for the possibility that I’m cheating which would almost certainly be true in this scenario. So the right fine-question is “given the fine-tuning evidence, how likely is it that the constants were set at random?” The values for physical constants conform to a very particular pattern – that which supports life. The fact that we have so many finely-tuned constants makes it unlikely that they were all set at random (at least in the single universe scenario and I’ve already shown some of the problems/challenges in multiverse explanations.)

Every 5-card hand that you draw is equally unlikely, but the royal flush is the highest hand in the game and always wins. Every hand you draw is unlikely, but whatever you draw is overwhelmingly likely to not be a royal flush.

Finally, the fourth post deals with the objection that the constants and quantities could not have been other than they are.

He quotes physicist John Barrow giving 5 reasons why the constants can vary, and then this:

Even if the constants and laws of physics couldn’t vary, there is even more reason to think that there were many physically possible sets of initial conditions. Paul Davies states this emphatically:

“Even if the laws of physics were unique, it doesn’t follow that the physical universe itself is unique…the laws of physics must be augmented by cosmic initial conditions…there is nothing in present ideas about ‘laws of initial conditions’ remotely to suggest that their consistency with the laws of physics would imply uniqueness. Far from it…it seems, then, that the physical universe does not have to be the way it is: it could have been otherwise.[4]”

John A. Wheeler agrees: “Never has physics come up with a way to tell with what initial conditions the universe was started off. On nothing is physics clearer than what is not physics.”

The constants and quantities are not determined by physics. They were selected by whoever created nature in the first place.

So that’s the series. I noticed that he kept linking to this Common Sense Atheism podcast featuring famous cosmologist Luke Barnes. I listened to it and wrote a summary of it in this post.

Filed under: News, , , , , ,

Why does the cause of the universe have to be a person / mind?

Must the cause of the universe be a person?

Here’s a post from my friend Fred Woodbridge, who blogs at IFCONFIG blog, where he quotes from Dr. Craig’s book “Reasonable Faith”. The quote contains three arguments for why the cause of the universe must be personal.

Quote:

First, as Richard Swinburne points out [in The Existence of God], there are two types of causal explanation: scientific explanations in terms of laws and initial conditions and personal explanations in terms of agents and their volitions. For example, if I come into the kitchen and find the kettle boiling, and I ask Jan, “Why is the kettle boiling?” she might answer, “The heat of the flame is being conducted via the copper bottom of the kettle to the water, increasing the kinetic energy of the water molecules, such that they vibrate so violently that they break the surface tension of the water and are thrown off in the form of steam.” Or she might say, “I put it on to make a cup of tea. Would you like some?” The first provides a scientific explanation, the second a personal explanation. Each is a perfectly legitimate form of explanation; indeed, in certain contexts it would be wholly inappropriate to give one rather than the other. Now a first state of the universe cannot have a scientific explanation, since there is nothing before it, and therefore it cannot be accounted for in terms of laws operating on initial conditions. It can only be accounted for in terms of an agent and his volitions, a personal explanation.

Second, the personhood of the cause of the universe is implied by its timelessness and immateriality. The only entities we know of which can possess such properties are either minds or abstract objects, like numbers. But abstract objects do not stand in causal relations. Indeed, their acausal nature is definitive for abstract objects; that is why we call them abstract. Numbers, for example, cannot cause anything. Therefore, the transcendent cause of the origin of the universe must be of the order of mind.

Third, this same conclusion is also implied by the fact that we have in this case the origin of a temporal effect from a timeless cause. We’ve concluded that the beginning of the universe was the effect of a first cause. By the nature of the case, that cause cannot have any beginning of its existence or any prior cause. Nor can there have been any changes in this cause, either in its nature or operations, prior
to the beginning of the universe. It just exists changelessly without beginning, and a finite time ago it brought the universe into existence. Now this is exceedingly odd. The cause is in some sense eternal and yet the effect which it produced is not eternal but began to exist a finite time ago. How can this be? If the necessary and sufficient conditions for the production of the effect are eternal, then why isn’t the effect eternal? How can all the causal conditions sufficient for the production of the effect be changelessly existent and yet the effect not also be existent along with the cause? How can the cause exist without the effect?

One might say that the cause came to exist or changed in some way just prior to the first event. But then the cause’s beginning or changing would be the first event, and we must ask all over again for its cause. And this cannot go on forever, for we know that a beginningless series of events cannot exist. There must be an absolutely first event, before which there was no change, no previous event. We know that this first event must have been caused. The question is: How can a first event come to exist if the cause of that event exists changelessly and eternally? Why isn’t the effect co-eternal with its cause?

To illustrate: Let’s say the cause of water’s freezing is subzero temperatures. If the temperature were eternally below zero degrees Centigrade, then any water around would be eternally frozen. If the cause exists eternally, the effect must also exist eternally. But this seems to imply that if the cause of the universe existed eternally, the universe would also have existed eternally. And this we know to be false.

One way to see the difficulty is by reflecting on the different types of causal relations. In event/event causation, one event causes another. For example, the brick’s striking the window pane causes the pane to shatter. This kind of causal relation clearly involves a beginning of the effect in time, since it is a relation between events which occur at specific times. In state/state causation one state of affairs causes another state of affairs to exist. For example, the water’s having a certain surface tension is the cause of the wood’s floating on the water. In this sort of causal relation, the effect need not have a beginning: the wood could theoretically be floating eternally on the water. If the wood begins to float on the water, then this will be a case of event/event causation: the wood’s beginning to float is the result of its being thrown into the water. Now the difficulty that arises in the case of the cause of the beginning of the universe is that we seem to have a peculiar case of state/event causation: the cause is a timeless state but the effect is an event that occurred at a specific moment in the finite past. Such state/event causation doesn’t seem to make sense, since a state sufficient for the existence of its effect should have a state as its effect.

There seems to be only one way out of this dilemma, and that is to say that the cause of the universe’s beginning is a personal agent who freely chooses to create a universe in time. Philosophers call this type of causation “agent causation,” and because the agent is free, he can initiate new effects by freely bringing about conditions which were not previously present. For example, a man sitting changelessly from eternity could freely will to stand up; thus, a temporal effect arises from an eternally existing agent. Similarly, a finite time ago a Creator endowed with free will could have freely brought the world into being at that moment. In this way, the Creator could exist changelessly and eternally but choose to create the world in time. By “choose” one need not mean that the Creator changes his mind about the decision to create, but that he freely and eternally intends to create a world with a beginning. By exercising his causal power, he therefore brings it about that a world with a beginning comes to exist. So the cause is eternal, but the effect is not. In this way, then, it is possible for the temporal universe to have come to exist from an eternal cause: through the free will of a personal Creator.

On the basis of a conceptual analysis of the conclusion implied by the kalām cosmological argument, we may therefore infer that a personal Creator of the universe exists, who is uncaused, beginningless, changeless, immaterial, timeless, spaceless, and unimaginably powerful. This, as Thomas Aquinas was wont to remark, is what everybody means by “God.”

There are lots of good objections to the kalam cosmological argument. A person could object to the notion of  timeless person is incoherent, or say that the notion of an unembodied mind is incoherent, or that we don’t know that non-physical minds can cause effects in the physical world, or that matter can’t come into being out of nothing, or that even if effects in the physical universe have causes that doesn’t mean the universe as a whole has to have a cause, or that the notion of causation doesn’t make sense unless time has already started. These are objections that Dr. Craig answered in his debate with Peter Millican, so if you hear these objections, I recommend watching that debate.

Filed under: News, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Four ways that the progress of experimental science conflicts with atheism

When people ask me whether the progress of science is more compatible with theism or atheism, I offer the following four basic pieces of scientific evidence that are more compatible with theism than atheism.

Here are the four pieces of evidence best explained by a Creator/Designer:

  1. the kalam argument from the origin of the universe
  2. the cosmic fine-tuning (habitability) argument
  3. the biological information in the first replicator (origin of life)
  4. the sudden origin of all of the different body plans in the fossil record (Cambrian explosion)

And I point to specific examples of recent discoveries that confirm those four arguments. Here are just a few of them:

  1. An explanation of 3 of the 6 experimental evidences for the Big Bang cosmology (From an article from Caltech)
  2. Examples of cosmic fine-tuning to allow the existence of conscious, embodied life (From the New Scientist)
  3. Evidence that functional protein sequences are beyond the reach of chance, (from Doug Axe’s JMB article)
  4. Evidence showing that Ediacaran fauna are not precursors to the Cambrian fossils, (from the journal Nature)

Atheists will typically reply to the recent scientific discoveries that overturned their speculations like this:

  1. Maybe the Big Bang cosmology will be overturned by the Big Crunch/Bounce so that the universe is eternal and has no cause
  2. Maybe there is a multiverse: an infinite number of unobservable, untestable universes which makes our finely-tuned one more probable
  3. Maybe the origin of life could be the result of chance and natural processes
  4. Maybe we will find a seamless chain of fossils that explain how the Cambrian explosion occurred slowly, over a long period time

Ever heard any of these responses?

Below I list some resources to help you to respond to the four responses of atheists to the experimental data.

1) The Big Crunch/Bounce has been disproved theoretically and experimentally.

Theoretically:

Nature 302, 505 – 506 (07 April 1983); doi:10.1038/302505a0

The impossibility of a bouncing universe

ALAN H. GUTH* & MARC SHER†

*Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

†Department of Physics, University of California, Irvine, California 92717, USA

Petrosian1 has recently discussed the possibility that the restoration of symmetry at grand unification in a closed contracting Robertson–Walker universe could slow down and halt the contraction, causing the universe to bounce. He then went on to discuss the possibility that our universe has undergone a series of such bounces. We disagree with this analysis. One of us (M.S.) has already shown2 that if a contracting universe is dominated by radiation, then a bounce is impossible. We will show here two further results: (1) entropy considerations imply that the quantity S (defined in ref. 1 and below), which must decrease by ~1075 to allow the present Universe to bounce, can in fact decrease by no more than a factor of ~2; (2) if the true vacuum state has zero energy density, then a universe which is contracting in its low temperature phase can never complete a phase transition soon enough to cause a bounce.

Experimentally:

The universe is not only expanding, but that expansion appears to be speeding up. And as if that discovery alone weren’t strange enough, it implies that most of the energy in the cosmos is contained in empty space — a concept that Albert Einstein considered but discarded as his “biggest blunder.” The new findings have been recognized as 1998’s top scientific breakthrough by Science magazine.

[…]The flood of findings about the universe’s expansion rate is the result of about 10 years of study, said Saul Perlmutter, team leader of the Supernova Cosmology Project at Lawrence Berkeley National Laboratory.

Perlmutter and others found such a yardstick in a particular kind of exploding star known as a Type 1A supernova. Over the course of several years, the astronomers developed a model to predict how bright such a supernova would appear at any given distance. Astronomers recorded dozens of Type 1A supernovae and anxiously matched them up with redshifts to find out how much the universe’s expansion was slowing down.

To their surprise, the redshift readings indicated that the expansion rate for distant supernovae was lower than the expansion rate for closer supernovae, Perlmutter said. On the largest scale imaginable, the universe’s galaxies appear to be flying away from each other faster and faster as time goes on.

“What we have found is that there is a ‘dark force’ that permeates the universe and that has overcome the force of gravity,” said Nicholas Suntzeff of the Cerro Tololo Inter-American Observatory, who is the co-founder of another group called the High-z Supernova Search Team. “This result is so strange and unexpected that it perhaps is only believable because two independent international groups have found the same effect in their data.”

There has only been one creation of the universe, and the universe will never reverse its expansion, so that it could oscillate eternally. That view is popular, perhaps in part because many people watched videos of Carl Sagan speculating about it in public school classrooms, but all it was was idle naturalistic speculation, (Sagan was a naturalist, and held out hope that science would vindicate naturalism), and has been contradicted by good experimental science. You should be familiar with the 3 evidences for the Big Bang (redshift, light element abundances (helium/hydrogen) and the cosmic microwave background radiation. There are others, (radioactive element abundances, second law of thermodynamics, stellar lifecycle), but those are the big three. Point out how the experimental evidence for the Big Bang has piled up, making the problem even worse for the eternal-universe naturalists.

2) The multiverse has not been tested experimentally, it’s pure speculation.

Speculation:

Multiverse thinking or the belief in the existence of parallel universes is more philosophy or science fiction than science. ”Cosmology must seem odd to scientists in other fields”.

George Ellis, a well-known mathematician and cosmologist, who for instance has written a book with Stephen Hawking, is sceptical of the idea that our universe is just another universe among many others.

A few weeks ago, Ellis, professor emeritus of applied mathematics at the University of Cape Town, reviewed Brian Greene’s book The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos (Knopf/Allen Lane, 2011) in the journal Nature. He is not at all convinced that the multiverse hypothesis is credible: ”Greene is not presenting aspects of a known reality; he is telling of unproven theoretical possibilities.”

According to professor Ellis, there is no evidence of multiverses, they cannot be tested and they are not science.

Ellis is not the only multiverse sceptic in this universe. A few months ago, science writer John Horgan wrote a column in Scientific American, expressing his doubt in multiverses.

When you get into a debate, you must never ever let the other side get away with asserting something they have no evidence for. Call them on it – point out that they have no evidence, and then hammer them with evidence for your point. Pile up cases of fine-tuning on top of each other and continuously point out that they have no experimental evidence for their speculations. Point out that more evidence we get, the more cases of fine-tuning we find, and the tougher the problem gets for naturalists. There is no evidence for a multiverse, but there is evidence for fine-tuning. TONS OF IT.

3) Naturalistic theories for the origin of life have two problems: can’t make the amino acids in an oxydized atmosphere and can’t make protein and DNA sequences by chance in the time available.

Building blocks:

The oxidation state of Hadean magmas and implications for early Earth’s atmosphere

Dustin Trail, E. Bruce Watson & Nicholas D. Tailby

Nature 480, 79–82 (01 December 2011) doi:10.1038/nature10655

[…]These results suggest that outgassing of Earth’s interior later than ~200?Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.

Functional protein sequences:

J Mol Biol. 2004 Aug 27;341(5):1295-315.

Estimating the prevalence of protein sequences adopting functional enzyme folds.

Axe DD.

The Babraham Institute, Structural Biology Unit, Babraham Research Campus, Cambridge CB2 4AT, UK. doug.axe@bbsrc.ac.uk

Proteins employ a wide variety of folds to perform their biological functions. How are these folds first acquired? An important step toward answering this is to obtain an estimate of the overall prevalence of sequences adopting functional folds.

[…]Starting with a weakly functional sequence carrying this signature, clusters of ten side-chains within the fold are replaced randomly, within the boundaries of the signature, and tested for function. The prevalence of low-level function in four such experiments indicates that roughly one in 10(64) signature-consistent sequences forms a working domain. Combined with the estimated prevalence of plausible hydropathic patterns (for any fold) and of relevant folds for particular functions, this implies the overall prevalence of sequences performing a specific function by any domain-sized fold may be as low as 1 in 10(77), adding to the body of evidence that functional folds require highly extraordinary sequences.

So atheists are in double jeopardy here. They don’t have a way to build the Scrabble letters needed for life, and they don’t have a way to form the Scrabble letters into meaningful words and sentences. Point out that the more research we do, the tougher the problem gets to solve for naturalists, and the more it looks like an effect of intelligence. Write out the calculations for them.

4) The best candidate to explain the sudden origin of the Cambrian era fossils was the Ediacaran fauna, but those are now recognized as not being precursors to the Cambrian fossils.

Science Daily reports on a paper from the peer-reviewed journal Science:

Evidence of the single-celled ancestors of animals, dating from the interval in Earth’s history just before multicellular animals appeared, has been discovered in 570 million-year-old rocks from South China by researchers from the University of Bristol, the Swedish Museum of Natural History, the Paul Scherrer Institut and the Chinese Academy of Geological Sciences.

[…]This X-ray microscopy revealed that the fossils had features that multicellular embryos do not, and this led the researchers to the conclusion that the fossils were neither animals nor embryos but rather the reproductive spore bodies of single-celled ancestors of animals.

Professor Philip Donoghue said: “We were very surprised by our results — we’ve been convinced for so long that these fossils represented the embryos of the earliest animals — much of what has been written about the fossils for the last ten years is flat wrong. Our colleagues are not going to like the result.”

Professor Stefan Bengtson said: “These fossils force us to rethink our ideas of how animals learned to make large bodies out of cells.”

The trend is that there is no evolutionary explanation for the body plans that emerged in the Cambrian era. If you want to make the claim that “evolution did it”, then you have to produce the data today. Not speculations about the future. The data we have today says no to naturalism. The only way to affirm naturalistic explanations for the evidence we have is by faith. But rational people know that we need to minimize our leaps of faith, and go with the simplest and most reasonable explanation – an intelligence is the best explanation responsible for rapid generation of biological information.

Conclusion

I do think it’s important for Christians to focus more on scientific apologetics and to focus their academic careers in scientific fields. So often I look at Christian blogs, and I see way too much G. K. Chesterton, Francis Chan and other untestable, ineffective jibber-jabber. We need to bring the hard science, and stop making excuses about not being able to understand it because it’s too hard. It’s not too hard. Everyone can understand Lee Strobel’s “The Case for a Creator“. That’s more than enough for the average Christian on science apologetics. We all have to do our best to learn what works. You don’t want to be anti-science and pro-speculation like atheists are. I recommend reading Uncommon Descent and Evolution News every day for a start.

Filed under: Polemics, , , , , , , , , , , , , , , , , , , , , , , , , , ,

William Lane Craig lectures on naturalistic alternatives to the Big Bang

Here’s the lecture, which was given in 2004 at the University of Colorado, Boulder.

This lecture might be a little advanced for beginners, but if you stretch your mind first, you shouldn’t tear anything. (Note: standard disclaimers apply if you do tear something!)

The description of the video states:

This is quite simply one of the best lectures William Lane Craig (a philosopher of science) has given. Craig explores the origins of the universe. He argues for a beginning of the universe, while refuting scientific models like the Steady State Theory, the Oscillating Theory, Quantum Vacuum Fluctuation Model, Chaotic Inflationary Theory, Quantum Gravity Theory, String Theory, M-Theory and Cyclic Ekpyrotic Theory.

And here is the description of the lecture from Reasonable Faith:

A Templeton Foundation lecture at the University of Colorado, Boulder, laying out the case from contemporary cosmology for the beginning of the universe and its theological implications. Includes a lengthy Q & A period which features previous critics and debate opponents of Dr. Craig who were in attendance, including Michael Tooley, Victor Stenger, and Arnold Guminski.

Craig has previously debated famous atheists Stenger and Tooley previously. And they both asked him questions in the Q&A time of this lecture. Imagine – having laid out your entire case to two people who have debated you before and who know your arguments well. What did they ask Craig, and how did he respond?

The scientific evidence

The Big Bang cosmology that Dr. Craig presents is the standard model for how the universe came into being. It is a theory based on six lines of experimental evidence.

Scientific evidence:

  1. Einstein’s theory of general relativity (GTR)
  2. the red-shifting of light from distant galaxies implies an expanding universe
  3. the cosmic background radiation (which also disproves the oscillating model of the universe)
  4. the second law of thermodynamics applied to star formation theory
  5. hydrogen-helium abundance predictions
  6. radioactive element abundance predictions

If you are looking for some detail on these evidences, here’s a re-cap of the three main evidences for the Big Bang cosmology from Caltech. (Numbers 2, 3 and 5 from the list above)

Excerpt:

Until the early 1900s, most people had assumed that the universe was fixed in size. New possibilities opened up in 1915, when Einstein formulated his famous general relativity theory that describes the nature of space, time, and gravity. This theory allows for expansion or contraction of the fabric of space. In 1917, astronomer Willem de Sitter applied this theory to the entire universe and boldly went on to show that the universe could be expanding. Aleksandr Friedmann, a mathematician, reached the same conclusion in a more general way in 1922, as did Georges Lemaître, a cosmologist and a Jesuit, in 1927. This step was revolutionary since the accepted view at the time was that the universe was static in size. Tracing back this expanding universe, Lemaître imagined all matter initially contained in a tiny universe and then exploding. These thoughts introduced amazing new possibilities for the universe, but were independent of observation at that time.

[…]Three main observational results over the past century led astronomers to become certain that the universe began with the big bang. First, they found out that the universe is expanding—meaning that the separations between galaxies are becoming larger and larger. This led them to deduce that everything used to be extremely close together before some kind of explosion. Second, the big bang perfectly explains the abundance of helium and other nuclei like deuterium (an isotope of hydrogen) in the universe. A hot, dense, and expanding environment at the beginning could produce these nuclei in the abundance we observe today. Third, astronomers could actually observe the cosmic background radiation—the afterglow of the explosion—from every direction in the universe. This last evidence so conclusively confirmed the theory of the universe’s beginning that Stephen Hawking said, “It is the discovery of the century, if not of all time.”

It’s probably a good idea to be familiar with these if you are presenting this argument, because experimental science is a reliable way of knowing about reality.

Published research paper

This lecture by Dr. Craig is based on a research paper published in an astrophysics journal, and was delivered to an audience of students and faculty, including atheist physicist Victor Stenger and prominent atheist philosopher Michael Tooley, at the University of Colorado at Boulder.

Here’s the peer-reviewed article that the lecture is based on.

Here’s the abstract:

Both cosmology and philosophy trace their roots to the wonder felt by the ancient Greeks as they contemplated the universe. The ultimate question remains why the universe exists rather than nothing. This question led Leibniz to postulate the existence of a metaphysically necessary being, which he identified as God. Leibniz’s critics, however, disputed this identification, claiming that the space-time universe itself may be the metaphysically necessary being. The discovery during this century that the universe began to exist, however, calls into question the universe’s status as metaphysically necessary, since any necessary being must be eternal in its existence. Although various cosmogonic models claiming to avert the beginning of the universe predicted by the standard model have been and continue to be offered, no model involving an eternal universe has proved as plausible as the standard model. Unless we are to assert that the universe simply sprang into being uncaused out of nothing, we are thus led to Leibniz’s conclusion. Several objections to inferring a supernatural cause of the origin of the universe are considered and found to be unsound.

The whole text of the article is posted online here.

If you want something to post on your Twitter or Facebook that is much shorter than this lecture, then you should check out this quick 4-minute explanation of the kalam argument.

Filed under: Videos, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Stephen C. Meyer: does the Big Bang cosmology support the existence of God?

Here’s the 66-minute video featuring Dr. Stephen C. Meyer, who holds the Ph.D in philosophy of science from Cambridge University, and other degrees in the hard sciences.

The lecture starts really, really slowly. You can just fast-forward to the 12 minute mark, or you might die of boredom.

Topics:

  • Up until the the last 100 years or so, everyone agreed that the universe was eternal
  • This is at odds with the traditional Christian view that God created the universe
  • Materialism, the view that matter is all there is, requires eternally existing matter
  • Discovery #1: Hubble discovers that the universe is expanding (redshift observation)
  • The expanding universe was resisted by proponents of the eternal universe, like Einstein
  • Some naturalists even proposed speculative static models like the steady-state model
  • However, not of the speculative models fit with observations and experimental results
  • Discovery #2: Penzias and Wilson discover the cosmic microwave background radiation
  • Measurements of this background radiation confirmed a prediction of the Big Bang theory
  • The steady-state theory was falsified of by the discovery of this background radiation
  • The oscillating model was proposed to prevent the need for an absolute beginning
  • But the oscillating model is not eternal, it loses energy on each “bounce”
  • A paper by Alan Guth and Marc Sher from 1982 proved that our universe will not bounce
  • In addition, experiments reveal that the universe will expand forever, and not contract
  • The beginning of the universe is more at home in a theistic worldview than an atheistic one
  • The beginning of the universe fits in well with the Bible, e.g. – Genesis 1, Titus 1, etc.

In case you are wondering about what the evidence is for the Big Bang, here are 3 of the evidences that are most commonly offered:

Three main observational results over the past century led astronomers to become certain that the universe began with the big bang. First, they found out that the universe is expanding—meaning that the separations between galaxies are becoming larger and larger. This led them to deduce that everything used to be extremely close together before some kind of explosion. Second, the big bang perfectly explains the abundance of helium and other nuclei like deuterium (an isotope of hydrogen) in the universe. A hot, dense, and expanding environment at the beginning could produce these nuclei in the abundance we observe today. Third, astronomers could actually observe the cosmic background radiation—the afterglow of the explosion—from every direction in the universe. This last evidence so conclusively confirmed the theory of the universe’s beginning that Stephen Hawking said, “It is the discovery of the century, if not of all time.”

By the way, Dr. Meyer also does a great job of explaining the problem of proteins, DNA and the origin of life in this lecture. And you can hear him defend his views in this debate podcast with Keith Fox and in this debate podcast with Peter Atkins. He does a great job in these debates.

Positive arguments for Christian theism

Filed under: Videos, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Click to see recent visitors

  Visitors Online Now

Page views since 1/30/09

  • 4,900,855 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,429 other followers

Archives

Follow

Get every new post delivered to your Inbox.

Join 2,429 other followers

%d bloggers like this: