New study: gamma ray bursts make life impossible in 90% of galaxies

Galactic Habitable Zone
Galactic Habitable Zone

When you argue for theism from science, you typically use arguments like these:

  • the origin of the universe from nothing (the Big Bang)
  • the fine-tuning of cosmic constants and quantities
  • the origin of the first living cell
  • the sudden origin of animal phyla in the Cambrian explosion
  • the fine-tuning of the galaxy for complex, embodied mind
  • the fine-tuning of the solar system for complex, embodied mind
  • the fine-tuning of the planet (and moon)  for complex, embodied mind

This is a peer-reviewed article from Science, one of the most prestigious peer-reviewed journals. It speaks to the fine-tuning of the galaxy for life.

The article says:

Of the estimated 100 billion galaxies in the observable universe, only one in 10 can support complex life like that on Earth, a pair of astrophysicists argues. Everywhere else, stellar explosions known as gamma ray bursts would regularly wipe out any life forms more elaborate than microbes. The detonations also kept the universe lifeless for billions of years after the big bang, the researchers say.

[…]Astrophysicists once thought gamma ray bursts would be most common in regions of galaxies where stars are forming rapidly from gas clouds. But recent data show that the picture is more complex: Long bursts occur mainly in star-forming regions with relatively low levels of elements heavier than hydrogen and helium—low in “metallicity,” in astronomers’ jargon.

Using the average metallicity and the rough distribution of stars in our Milky Way galaxy, Piran and Jimenez estimate the rates for long and short bursts across the galaxy. They find that the more-energetic long bursts are the real killers and that the chance Earth has been exposed to a lethal blast in the past billion years is about 50%. Some astrophysicists have suggested a gamma ray burst may have caused the Ordovician extinction, a global cataclysm about 450 million years ago that wiped out 80% of Earth’s species, Piran notes.

The researchers then estimate how badly a planet would get fried in different parts of the galaxy. The sheer density of stars in the middle of the galaxy ensures that planets within about 6500 light-years of the galactic center have a greater than 95% chance of having suffered a lethal gamma ray blast in the last billion years, they find. Generally, they conclude, life is possible only in the outer regions of large galaxies. (Our own solar system is about 27,000 light-years from the center.)

Things are even bleaker in other galaxies, the researchers report. Compared with the Milky Way, most galaxies are small and low in metallicity. As a result, 90% of them should have too many long gamma ray bursts to sustain life, they argue. What’s more, for about 5 billion years after the big bang, all galaxies were like that, so long gamma ray bursts would have made life impossible anywhere.

But are 90% of the galaxies barren? That may be going too far, Thomas says. The radiation exposures Piran and Jimenez talk about would do great damage, but they likely wouldn’t snuff out every microbe, he contends. “Completely wiping out life?” he says. “Maybe not.” But Piran says the real issue is the existence of life with the potential for intelligence. “It’s almost certain that bacteria and lower forms of life could survive such an event,” he acknowledges. “But [for more complex life] it would be like hitting a reset button. You’d have to start over from scratch.”

The analysis could have practical implications for the search for life on other planets, Piran says. For decades, scientists with the SETI Institute in Mountain View, California, have used radio telescopes to search for signals from intelligent life on planets around distant stars. But SETI researchers are looking mostly toward the center of the Milky Way, where the stars are more abundant, Piran says. That’s precisely where gamma ray bursts may make intelligent life impossible, he says: “We are saying maybe you should look in the exact opposite direction.”

You need to be able to pick up enough heavy elements from surrounding supernovae to make a metal-rich star, but you have to be far enough away from other stars to avoid getting blasted with gamma rays. The metal-rich star is needed to be able to support the circumstellar habitable zone, which is the zone where liquid water exists on the planet’s surface.

It’s important to understand that this factor in the study just a few of the things you need in order to get a planet that supports life. The more factors you add, the more unexpected complex, embodied life of any kind becomes.

Here are a few of the more well-known ones:

  • a solar system with a single massive Sun than can serve as a long-lived, stable source of energy
  • a terrestrial planet (non-gaseous)
  • the planet must be the right distance from the sun in order to preserve liquid water at the surface – if it’s too close, the water is burnt off in a runaway greenhouse effect, if it’s too far, the water is permanently frozen in a runaway glaciation
  • the solar system must be placed at the right place in the galaxy – not too near dangerous radiation, but close enough to other stars to be able to absorb heavy elements after neighboring stars die
  • a moon of sufficient mass to stabilize the tilt of the planet’s rotation
  • plate tectonics
  • an oxygen-rich atmosphere
  • a sweeper planet to deflect comets, etc.
  • planetary neighbors must have non-eccentric orbits

There’s a good video on the galactic habitable zone for you to watch right here:

It takes a lot to make just one planet that can support complex, embodied life of any kind.

3 thoughts on “New study: gamma ray bursts make life impossible in 90% of galaxies”

  1. This may sound like a stupid question,WK, but how does one know if this is “peer-reviewed”? It appears in the news section.

    Like

    1. I followed the link in the article here:

      “How likely is that to happen? Tsvi Piran, a theoretical astrophysicist at the Hebrew University of Jerusalem, and Raul Jimenez, a theoretical astrophysicist at the University of Barcelona in Spain, explore that apocalyptic scenario in a paper in press at Physical Review Letters.”

      Like

Leave a comment